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Abstract

In many models, economic growth is driven by people discovering new ideas.

These models typically assume either a constant or growing population. How-

ever, in high income countries today, fertility is already below its replacement rate:

women are having fewer than two children on average. It is a distinct possibility

that global population will decline rather than stabilize in the long run. In standard

models, this has profound implications: rather than continued exponential growth,

living standards stagnate for a population that vanishes. Moreover, even the opti-

mal allocation can get trapped in this outcome if there are delays in implementing

optimal policy.
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1. Introduction

In many growth models based on the discovery of new ideas, the size of the population

plays a crucial role. Other things equal, a larger population means more researchers

which in turn leads to more new ideas and to higher living standards. This basic fea-

ture is shared by the original endogenous growth models of Romer (1990), Aghion and

Howitt (1992), and Grossman and Helpman (1991) as well as by the semi-endogenous

growth models of Jones (1995), Kortum (1997), and Segerstrom (1998) in which stan-

dard policies have level effects instead of growth effects. It is a feature of numerous

other models.1

In a recent book entitled Empty Planet, Bricker and Ibbitson (2019) make the case

based on a rich body of demographic research that global population growth in the

future may not only fall to zero but may actually turn negative. For example, the natural

rate of population growth (i.e. births minus deaths, ignoring immigation) is already

negative in Japan and in many European countries such as Germany, Italy, and Spain

(United Nations, 2019).

Figure 1 shows historical data on the total fertility rate for various regions. This

measure is the average number of live births a cohort of women would have over their

reproductive life if they were subject to the fertility rates of a given five-year period.

To sustain a constant population requires a total fertility rate slightly greater than 2

in order to compensate for mortality. The graph shows that high income countries

as a whole, as well as the U.S. and China individually, have been substantially below

2 in recent years. According to the U.N.’s World Population Prospects 2019, the total

fertility rate in the most recent data is 1.8 for the United States, 1.7 for China and for

High Income Countries on average, 1.6 for Germany, 1.4 for Japan, and 1.3 for Italy

and Spain. In other words, fertility rates in the rich countries of the world are already

consistent with negative long-run population growth: women are having fewer than

two children throughout much of the developed world.

A sharp downward trend in India and for the world as a whole is also evident in the

figure. As countries get richer, fertility rates appear to decline to levels consistent, not

with a constant population, but actually with a declining population.

1Examples include Kremer (1993), Acemoglu (1998), Ngai and Samaniego (2011), Doepke and Zilibotti
(2014), Acemoglu and Restrepo (2018), Akcigit and Kerr (2018), Atkeson and Burstein (2019), and Buera
and Oberfield (2020).
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Figure 1: The Total Fertility Rate (Live Births per Woman)
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Note: The total fertility rate is the average number of live births a hypothetical cohort of women
would have over their reproductive life if they were subject during their whole lives to the fertility
rates of a given period and if they were not subject to mortality. Each data point corresponds to a
five-year period. Source: United Nations (2019).

Conventional wisdom holds that in the future, global population will stabilize at

something like 8 or 10 billion people. But maybe this is not correct. The fact that so

many rich countries already have fertility below replacement indicates that a future

with negative population growth is a possibility that deserves further consideration.

The models of economic growth cited above assume a constant or growing popu-

lation, and for understanding economic growth historically, that is clearly the relevant

case. The demographic evidence, however, suggests that this may not be the case in the

future. Hence the focus of this paper: what happens to economic growth if population

growth is negative?

We show below — first in models with exogenous population growth and then later

in a model with endogenous fertility — that negative population growth can be par-

ticularly harmful. When population growth is negative, both endogenous and semi-

endogenous growth models produce what we call an Empty Planet result: knowledge

and living standards stagnate for a population that gradually vanishes. In a model

with endogenous fertility, a surprising result emerges: even the social planner can get

stuck in this trap if society delays implementing the optimal allocation and suffers from

inefficient negative population growth for a sufficiently long period. In contrast, if the
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economy switches to the optimal allocation soon enough, it can converge to a balanced

growth path with sustained exponential growth: an ever-increasing population benefits

from ever-rising living standards. Policies related to fertility may therefore determine

whether we converge to an “Empty Planet” or to an “Expanding Cosmos”; they may be

much more important than we have appreciated.

Literature Review. Many models feature endogenous fertility, modeled in a variety of

ways. Becker and Barro (1988) and Barro and Becker (1989) take an altruistic approach

in which the utility of children enters the utility function for parents, giving rise to a

dynastic utility function. Papers that follow this approach include Doepke (2004) and

Manuelli and Seshadri (2009). Other papers emphasize a “warm-glow” effect in which

parents care about the number of their offspring; for example, see De La Croix and

Doepke (2003), Hock and Weil (2012), and Doepke and Tertilt (2016). Finally, many

papers feature a quantity-quality tradeoff and assign a key role to education, often in

the context of explaining the demographic transition and the emergence of modern

economic growth. These include Becker, Murphy and Tamura (1990), Galor and Weil

(1996, 2000), Greenwood and Seshadri (2002), Kalemli-Ozcan (2002), Cervellati and

Sunde (2015), and de Silva and Tenreyro (2020).

On the empirical side, Jones and Tertilt (2008) provide a detailed account of the

decline in U.S. fertility using Census data, while Delventhal, Fernández-Villaverde and

Guner (2021) study the demographic transition using data from 186 countries and 250

years. Chatterjee and Vogl (2018) use extensive microdata from 255 household surveys

to study how fertility declines with economic growth. Song, Storesletten, Wang and

Zilibotti (2015) note that urbanization can continue even if the population declines;

if people in urban areas disproportionately invent ideas, urbanization could delay the

onset of the Empty Planet result. Feyrer, Sacerdote and Stern (2008) highlight negative

population growth in Japan and parts of Europe and raise the possibility that it could

revert back to being positive as the status of women in society improves. Young (2005)

quantifies the neoclassical gain from higher capital-labor ratios that occurs when pop-

ulations decline, in this case due to the shock from HIV and AIDS. Doepke and Tertilt

(2016) and Greenwood, Guner and Vandenbroucke (2017) provide surveys of family

macroeconomics, including fertility. This literature sometimes recognizes the possibil-
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ity that population growth could ultimately be negative, but that is not its emphasis.

More generally, demographic forces are garnering broader attention in the macroe-

conomic literature. Several recent papers suggest that falling labor force growth may

explain a substantial part of the decline in firm entry and dynamism in the U.S. econ-

omy, including Karahan, Pugsley and Sahin (2019), Hopenhayn, Neira and Singhania

(2018), Engbom (2019), and Peters and Walsh (2021).

Galor and Moav (2002) suggest that evolutionary forces can play a key role in eco-

nomic growth. In this context, one wonders if those forces might eventually favor

groups with higher fertility, either for accidental genetic reasons or for cultural reasons.

Berman (2000) suggests that the ultra-orthodox community in Israel might be one such

group, with fertility rates above 7 in recent decades, which led a disproportionately

larger fraction of school-age children to be from these communities. This is surely an

important consideration to take into account in a broader study of fertility and growth.

The point here is more narrow, namely to highlight some of the implications of negative

population growth, were it to occur.

The literature that explicitly considers negative population growth in a growth con-

text is much smaller. Manuelli and Seshadri (2009) explain the heterogeneity in inter-

national fertility rates by emphasizing that taxes and transfers in Europe may in part

be responsible for low fertility. Sasaki and Hoshida (2017) study negative population

growth in a semi-endogenous growth setting. They show that the rate of technological

change falls to zero as people endogenously exit the research sector. More surprisingly,

they provide a setting where negative population growth leads to positive steady-state

growth in income per person because capital per person rises as the number of people

declines. However, this result is incomplete in that they assume a zero depreciation

rate for capital: if there is a fixed amount of capital but the population declines, then

capital per person grows. One can easily generalize their result to positive depreciation

rates using a Solow model. If the rate of population decline is η and capital depreciates

at rate δ, then there are two possible regimes. If η > δ, i.e. the rate of population

decline is faster than the depreciation rate of capital, then K/L rises asympotically

along a balanced growth path. But when η < δ, instead, you get the standard Solow

result of constant K/L in steady state. Empirically, rates of population decline are

perhaps 1% or smaller, whereas depreciation rates are 3% or 5% or more. The Sasaki
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and Hoshida (2017) case of exponential growth in capital per person from declining

population therefore seems implausible as an empirical matter. Christiaans (2011) has

results along these lines in a model with increasing returns that results from externali-

ties to capital, showing the two possible regimes.

This motivates Sasaki (2019a) to consider a model with non-renewable resources,

where a zero depreciation rate is more natural. In that case, though, one might wonder

about elasticities of substitution: if a single Robinson Crusoe populated an earth full

of land and natural resources, would her income be extremely high? Sasaki (2019b)

considers a Solow model with CES production and finds that with an elasticity of sub-

stitution less than unity, the long-run growth rate is determined only by the rate of

technological progress, with no contribution from the rising capital-labor ratio that

results from negative population growth. Because capital is not essential, even an infi-

nite capital-labor ratio gives finite output. These results suggests that capital and non-

renewable resources can be omitted from the model without much loss in generality,

which is what we do below.

Finally, related results can also be found in other idea-driven growth models. Kre-

mer (1993) emphasizes the broad historical evidence linking population and rising liv-

ing standards. Interestingly, he notes that the technological stock in Tasmania declined

over thousands of years, while the small population of Flinders Island completely died

off several thousand years after occupying the island. Kremer interprets these episodes

as possibly indicating a role for the depreciation of knowledge but says they are likely

“of limited importance when looking at the world as a whole” (Footnote 21). Romer

(1990) notes that exponential growth requires a sufficiently large population. If the

population is too small, the “market size” effect is too weak and the incentives for

research disappear. This failure would not occur in Kremer (1993) or in the setup below,

where all people create ideas (perhaps with some low probability) — these models

feature “learning by working” instead of “learning or working.” In that case, a con-

stant population always produces a positive number of new ideas and living standards

rise without bound, albeit at a rate that slows over time. Thus, there is an important

difference between low population and negative population growth.
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2. The Empty Planet Result

How do idea-based growth models behave when the population declines? We begin

by introducing exogenous, negative population growth into a simplified version of the

Romer (1990), Aghion and Howitt (1992), and Grossman and Helpman (1991) endoge-

nous growth models. This case turns out to be especially easy to analyze. Then we

consider semi-endogenous growth models.

2.1 Fully Endogenous Growth as in Romer/AH/GH

Consider the following simplified version of idea-driven endogenous growth models:

Yt = Aσ
t Nt (1)

Ȧt

At
= αNt (2)

Nt = N0e
−ηt, η > 0 (3)

According to equation (1), a single consumption-output good is produced using

people Nt and the stock of ideas (“knowledge”) At. Crucially, as in Romer (1990), there

is constant returns in this production function to rival inputs — here just people —

and therefore increasing returns to people and ideas together. The degree of increasing

returns is parameterized by σ.

Equation (2) is the endogenous growth equation. It says that the growth rate of

knowledge is proportional to the population. The literature often distinguishes be-

tween researchers and workers who produce the consumption good, but not always.

Here, we make the simplifying assumption that is closer in spirit to learning by doing:

people can work to make consumption goods and get new ideas at the same time.

Let’s pause for a moment to recall the standard result from endogenous growth

models. That is, ignore equation (3) and its negative population growth and instead

assume that the population is constant at some value N̄ . In that case, equation (2) im-

plies that the stock of ideas grows at a constant rate, αN̄ , and equation (1) translates this

into growth in income per person. A constant population delivers constant exponential

growth in living standards forever.

Now let’s see what happens when population growth is negative. Equation (3) spec-
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ifies that the population declines exogenously at the rate η. For example, η = .005

corresponds to a population that declines exponentially at a half a percent per year.

We write the model here and throughout the paper so that all parameter values (Greek

letters) are positive.

Combining (2) and (3) gives the following differential equation, in which the growth

rate of knowledge declines exponentially:

Ȧt

At
= αN0e

−ηt.

This differential equation is easy to solve, yielding the following result (derived in Ap-

pendix A.1):

Result 1 (Romer/AH/GH with Negative Population Growth): In the Romer/AH/GH model

with negative population growth, the stock of knowledge At is given by

logAt = logA0 +
gA0

η

(
1− e−ηt

)

Both At and income per person yt ≡ Yt/Nt converge to constant values A∗ and y∗ as t

goes to infinity, where

A∗ = A0 exp

(
gA0

η

)

y∗ = y0 exp

(
gy0
η

)

where gxt denotes the exponential growth rate of some variable x at date t, and variables

indexed by 0 denote initial values.

We refer to this as the Empty Planet result. Economic growth stagnates as the stock

of knowledge and living standards settle down to constant values. Meanwhile, the

population itself falls at a constant rate, gradually emptying the planet of people. This

outcome stands in stark contrast to the conventional result in growth models in which

knowledge, living standards, and even population grow exponentially: not only do we

get richer over time, but these higher living standards apply to an ever rising number of

people.

The last equation in Result 1 is amenable to calibration. For example, if gy0 = gA0 =

1% and η = 1%, so that the population is falling at 1% per year, the long-run level of
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GDP per person will be e1 ≈ 2.7 times higher than current income. Slower declines in

population would make this factor even higher.

In what follows, we explore the robustness of this finding. First, we see that it occurs

in semi-endogenous growth models as well, and then we consider what happens when

the population growth rate itself is an endogenous outcome.

2.2 Semi-Endogenous Growth with Declining Population

With positive rates of population growth, semi-endogenous growth models in the tra-

dition of Jones (1995), Kortum (1997), and Segerstrom (1998) give very different results

from the fully endogenous growth models. We see next that with negative population

growth, the results are instead quite similar, and the Empty Planet result still emerges.

A simplified semi-endogenous growth model is obtained by changing the idea pro-

duction function:

Yt = Aσ
t Nt (4)

Ȧt

At
= αNλ

t A
−β
t (5)

Nt = N0e
−ηt. η > 0 (6)

Specifically, we introduce the parameter β > 0, capturing the extent to which new ideas

(proportional improvements in productivity) are getting harder to find.2

Once again, let’s first remind ourselves of the standard result from semi-endogenous

growth models. In particular, if we ignore the third equation and instead assume a

constant positive rate of population growth, we have the standard semi-endogenous

growth setup. The only way the left-hand side of equation (5) can be constant is if the

right-hand side is constant, which requires Nλ
t /A

β
t to be constant. But this requires the

growth rate of At to be proportional to the positive population growth rate. And that

is the essence of semi-endogenous growth: the nonrivalry of ideas leads to increasing

returns, and the growth rate of the economy is the product of the degree of increasing

returns to scale and the rate at which scale is growing — the population growth rate.

This result re-appears later in the paper so we postpone further discussion until that

2An alternative in the literature is to write the idea production function as Ȧt = αNλ
t A

φ
t with φ < 1.

These are equivalent, with β = 1− φ.
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time and move on to the main point of this section.

Now assume population growth is negative instead of positive. Combining (5) and (6)

gives the following differential equation:

Ȧt

At
= αNλ

0 e
−ληtA−β

t .

Integrating this differential equation gives the next result (derived in Appendix A.2):

Result 2 (Semi-Endogenous Growth with Negative Population Growth): In the semi-

endogenous growth model with negative population growth, the stock of knowledge At

is given by

At = A0

(

1 +
βgA0

λη

(

1− e−ληt
))1/β

.

Defining γ ≡ λσ/β to capture the overall degree of increasing returns to scale in this

economy, both At and income per person yt ≡ Yt/Nt converge to constant values A∗ and

y∗ as t goes to infinity, where

A∗ = A0

(

1 +
βgA0

λη

)1/β

.

y∗ = y0

(

1 +
gy0
γη

)γ/λ

. (7)

Along the transition path, the growth rate satisfies

ẏt
yt

= gy0 ·

(
yt
y0

)−λ
γ

e−ληt =
gy0e

−ληt

1 +
gy0
γη (1− e−ληt)

In other words, the growth rate falls to zero slightly faster than e−ληt.

This result confirms that both endogenous growth and semi-endogenous growth

lead to the Empty Planet outcome. Rather than sustained exponential growth in living

standards and population, living standards stabilize for a vanishing number of people.

Quantitatively, however, the level at which lower living standards stagnate can be

much lower with semi-endogenous growth. To illustrate, we need to calibrate one

additional parameter relative to what we had before. Across a range of different case

studies, Bloom, Jones, Van Reenen and Webb (2020) find estimates of β ≈ 3 when σ = 1
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(a normalization when we do not observe ideas directly) and λ = 1. Alternatively, for

λ = 3/4, they find β ≈ 2. Both sets of parameters lead to γ ≈ 1/3. Plugging these values

into equation (7), along with an initial TFP growth rate of 1% and η = 1% as before, the

long-run level of GDP per person would be around 60-90% higher than current income.

In the endogenous growth case, the gain is two to three times larger: with β = 0 (so that

γ = ∞), long run income is 170% higher than current income for the same parameter

values.

We can also say something about how long it takes to reach the steady state. In

particular, the amount of time it takes for A(t) to rise half-way to its steady state value

can be computed easily. For the parameter values just considered, the half lives range

from 85 to 133 years for the semi-endogenous growth model and around 250 years for

the Romer case.3

3. Endogenous Fertility and the Equilibrium Allocation

We now endogenize the population growth rate itself, with an eye toward answering

two questions. First, can the equilibrium of an endogenous fertility model feature

negative population growth in steady state? Second, how does the optimal allocation

behave for such a model?

There are many related ways to endogenize fertility, and the literature has not con-

verged on a single best practice; see the literature review at the start of this paper for

references. Almost all approaches assume that having offspring is a time intensive

activity, and this is at the center of the approach we take below.

In models of endogenous fertility, population growth in a decentralized equilibrium

can be equal to, above, or below the optimal rate. In fact, because the number of

people is endogenous, the definition of “optimal” is itself not obvious; for example,

see Golosov, Jones and Tertilt (2007). The most natural case of interest here is one in

which parents do not fully internalize the fact that their offspring create nonrival ideas

that benefit the entire economy, so that equilibrium fertility is too low.

But there are also other possible nuances. For example, Farhi and Werning (2007)

note that the social planner may care about future generations both because individu-

3See Appendix A.2 for the derivation.
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als care about their own children and because the social planner puts weight on each

generation. This means that social welfare will generally put more weight on future

generations than individuals do, also leading optimal fertility to be higher than equilib-

rium fertility. Externalities to human capital in models with a quality-quantity tradeoff

can also give rise to inefficiently low fertility. Alternatively, one can construct idea-

based models in which optimal fertility is below equilibrium fertility; see Jones (2003)

and Futagami and Hori (2010) for some discussion. Here, we do not attempt to draw

any firm conclusion about the range of possible externalities that may exist. Instead,

we focus on some general lessons that emerge when the equilibrium features negative

population growth while the optimal allocation has positive population growth.

To simplify, we abstract from the demographic transition. That is, we are not fo-

cused on how fertility fell from 5 to 3 to 1.8 children per woman. Instead, the focus is

on the stable fertility rate at the end of the demographic transition and what happens

if it implies negative population growth.

3.1 Environment

The economic environment for the setup with endogenous fertility is in Table 1. It

builds on our earlier model, with one enhancement. There is now a single allocative

decision that has to be made at each date: each person is endowed with one unit of

time that can be used to produce either consumption or offspring. Devoting ℓt units

of time to producing children leads to a fertility rate of b(ℓt) = b̄ℓt. The linear function

is convenient analytically but not essential. There is a constant death rate, δ, and the

population growth rate is nt = b̄ℓt − δ. Thus if ℓt is sufficiently small, the population

growth rate can be negative.

This setup excludes many other considerations that would be interesting to explore

in the future such as human capital, physical capital, and a quantity-quality tradeoff.

We instead focus on the simplest model that allows us to highlight some important (and

general) economic points.4

4One question that comes up often is whether or not growth in the “quality” of people can make up for
the lack of “quantity” of people. It is possible, but only in a knife-edge case and therefore seems unlikely.
Let ht denote human capital per person, and suppose the input into producing ideas is htNt. Assume
human capital evolves according to ḣt = αℓhth

ψ
t − δht. Clearly if ψ < 1, then h converges to a constant

and growth in quality cannot make up for growth in quantity. On the other hand, if ψ > 1, quality growth
explodes and you get faster than exponential growth. Only in the specific case of Lucas (1988) with ψ = 1
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Table 1: Economic Environment: Endogenous Fertility Model

Final output Yt = Aσ
t (1− ℓt)Nt

Population growth Ṅt
Nt

= nt = b(ℓt)− δ

Fertility b(ℓt) = b̄ℓt

Ideas Ȧt
At

= Nλ
t A

−β
t

Generation 0 utility U0 =
∫∞
0 e−ρtu(ct, Nt)dt, N0 = 1, ρ ≡ ρ̄+ δ

Flow utility u(ct, Nt) =
(Nε

t ct)
1−θ

1−θ

Consumption ct = Yt/Nt

People obtain utility from consumption and from having descendants. The ex-

pected lifetime utility of a member of the generation born at date 0 is

U0 =

∫ ∞

0
e−(ρ̄+δ)tu(ct, Nt)dt

where ρ̄ is the pure rate of time preference, ct is consumption, and N0 = 1 so that Nt is

the number of descendants of generation 0 at date t. Discounting also occurs because

of the death rate, and we define ρ ≡ ρ̄+ δ as the overall discount rate.

Flow utility takes the form considered in the dynastic utility frameworks of Barro

and Becker (1989) and Jones and Schoonbroodt (2010):

u(ct, Nt) = Nα
t ũ(ct) =

(N ε
t ct)

1−θ

1− θ
,

where ε and θ are greater than zero. This can be thought of as a Cobb-Douglas ag-

gregator of people and consumption that sits inside CRRA preferences with a constant

elasticity of intertemporal substitution 1/θ. For the traditional reasons well-known in

macro, the Cobb-Douglas unitary elasticity of substitution is necessary so that a con-

stant interior time allocation — here leading to a constant interior population growth

will quality grow exponentially. For that knife-edge case, you have to believe something like the following:
holding the stock of ideas constant, can each generation spending a constant 16 years in school generate
exponential growth in quality forever? It seems more natural to imagine that if knowledge is constant, 16
years of schooling allows each generation to achieve a constant high level of human capital.
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rate — can coexist with exponential growth in consumption.

3.2 A Competitive Equilibrium with Externalities

As in Romer (1990), the nonrivalry of ideas leads to increasing returns. Some departure

from pure perfect competition is necessary, and the equilibrium in general will not be

efficient. We consider a simple equilibrium in which the production of ideas is purely

external. Also, we start with the equilibrium allocation because it is designed to be

simple. Section 4 below considers an optimal allocation.

Firms produce final output in perfectly competitive markets, taking the stock of

ideas At as exogenous. Each person chooses time spent raising children versus working

in the market sector, ℓt versus 1 − ℓt, in order to maximize utility, also taking the time

path of At as exogenous. Hence ideas evolve according to the idea production function

entirely as an externality: people do not recognize that by having children, their kids

may produce new knowledge in the future that makes the entire economy more pro-

ductive. Markets are perfectly competitive, subject to the idea externality, and the only

price is the wage per unit of work, given by wt = Aσ
t in equilibrium.

Taking {wt} as given, people in the representative initial generation solve

max
{ℓt}

∫ ∞

0
e−ρtu(ct, Nt)dt

subject to

Ṅt = (b(ℓt)− δ)Nt

ct = wt(1− ℓt)

and given the function forms assumed in Table 1.

The Hamiltonian for this problem is

H = u(ct, Nt) + vt[b(ℓt)− δ]Nt

where vt is the shadow price (in utils) of another person.

The equilibrium allocation is then characterized in the following result (derived in

Appendix A.3):
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Result 3 (The Equilibrium with Endogenous Fertility): The equilibrium allocation of

labor to fertility is given by

ℓt = 1−
1

b̄Ṽt

, where Ṽt ≡
vtNt

uctct
. (8)

When there is an interior solution, population growth satisfies

nt = b̄− δ −
1

Ṽt

. (9)

Finally, there exists a steady state with a constant allocation of time devoted to offspring

and therefore a constant population growth rate. The steady-state value of the popula-

tion is

Ṽeq =
ε

ρ− ε(1− θ)neq − (1− θ)geqc
(10)

The steady state population growth rate is

neq =







1
θ

(
b̄− δ − ρ

ε

)
if b̄− δ − ρ

ε < 0

b̄−δ−ρ/ε

1−(1−θ)( ε+γε )
otherwise

(11)

Depending on parameter values, equilibrium population growth can be positive or neg-

ative. The Empty Planet result can therefore be supported as an equilibrium outcome

with endogenous fertility.

The variable Ṽt is important and has the following economic interpretation: it is the

shadow value of the entire population vtNt, converted into output units by dividing by

the marginal utility of consumption uct ≡ ∂u(ct, Nt)/∂ct, as a ratio to consumption per

person. In other words, it is the social value of the population measured in years of per

capita consumption. With the generalized Barro-Becker preferences, it is constant in

steady state.

Depending on parameter values, steady-state population growth can be positive or

negative. The negative case is the one that is novel and of interest here. It can occur

if ε is sufficiently small, for example, so that people do not care that much about their

offspring. In that case, we have an equilibrium setup with endogenous fertility that

feeds naturally into the results from Section 2. The negative population growth com-

bined with the idea production function implies that the equilibrium with endogenous
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fertility features a growth rate that falls to zero so that output per person converges to a

steady state, as in equation (7). Therefore, the Empty Planet result can be supported as

an equilibrium outcome with endogenous fertility.

4. The Optimal Allocation

Now instead consider the optimal allocation in this economic environment. With en-

dogenous fertility, there is no unique criterion for social welfare. Instead, we consider

the allocation that maximizes the dynastic utility of a representative generation. The

key reason this differs from the equilibrium allocation considered above is that the

optimal allocation takes into account the fact that a larger population generates more

nonrival ideas, raising everyone’s income. This will lead optimal fertility to be higher

than its equilibrium rate.

Defined this way, the optimal allocation solves

max
{ℓt}

∫ ∞

0
e−ρtu(ct, Nt)dt

subject to

Ṅt = (b(ℓt)− δ)Nt

Ȧt

At
= Nλ

t A
−β
t

ct = Yt/Nt = Aσ
t (1− ℓt).

The Hamiltonian for the optimal allocation is

H = u(ct, Nt) + µtN
λ
t A

1−β
t + vt[b(ℓt)− δ]Nt

where µt is the shadow price of an idea and vt is the shadow price of another person.

The first-order condition for this problem with respect to ℓt is

vtNtb
′(ℓt)

︸ ︷︷ ︸

MU of time in fertility

=
uc(ct, Nt)ct

1− ℓt
.

︸ ︷︷ ︸

MU of time in making goods

(12)

Defining the social value of people measured in years of per capita consumption to be
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Ṽt ≡
vtNt
uctct

, this first-order condition can be rewritten as

ℓt = 1−
1

b̄Ṽt

and therefore the population growth rate is

nt = b̄− δ −
1

Ṽt

(13)

where we’ve left implicit the constraint that ℓ ≥ 0 and therefore n ≥ −δ. The above two

equations have the same form as the equilibrium solutions in Result 3; however, the

shadow value of people, Ṽt, will be different. We abuse notation for now by not using a

different letter for the equilibrium versus optimal Ṽt.

The first-order condition with respect to At can be expressed as an arbitrage equa-

tion:

ρ =
µ̇t

µt
+

1

µt

(

σ
uctct
At

+ µt(1− β)
Ȧt

At

)

.

The required rate of return is ρ, and the production of ideas yields both a capital gain

and a dividend. Continuing this analogy, this equation can be solved to yield the shadow

price of an idea along a balanced growth path as the initial dividend divided by “r-g”:

µt =
σ uctct

At

ρ− gµt − (1− β)gAt
. (14)

It turns out to be very useful to define a new variable:

zt ≡
µtȦt

uctct
=

σgAt

ρ− gµt − (1− β)gAt
.

zt is the social value of the new ideas produced in period t, measured in years of per

capita consumption. It is constant along a BGP and given by5

z∗ =
σg∗A

ρ− ε(1− θ)n∗ + (β − σ(1− θ))g∗A
(15)

Importantly, notice that if n∗ < 0 so that g∗A = 0, the social value of the flow of ideas z∗

is also zero: there are no ideas being produced in the Empty Planet, so the value is zero.

5The derivation just involves computing the growth rate of µt along a BGP from equation (14).
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Returning to the Hamiltonian, the first-order condition for Nt in arbitrage form is

ρ =
v̇t
vt

+
1

vt

(

uNt + µtλ
Ȧt

Nt
+ vtnt

)

.

Rearranging gives

vt =
uNt + µtλ

Ȧt
Nt

ρ− gvt − nt

and therefore

Ṽt ≡
vtNt

uctct
=

uNtNt
uctct

+ λµtȦt
uctct

ρ− gvt − nt
=

ε+ λzt
ρ− gvt − nt

.

The social value of people Ṽ is constant along a BGP and given by

Ṽ ∗
sp =

ε+ λz∗

ρ− ε(1− θ)n∗ − (1− θ)g∗c
. (16)

Comparing this equation to the equivalent condition in the equilibrium, equation (10),

reveals that they differ because of the presence of z∗: the optimal allocation values

people not only for the direct utility they provide (ε), but also because of the additional

ideas they produce.

Finally, steady-state population growth is given by evaluating the first-order condi-

tion in (13) at this Ṽ ∗:

n∗
sp = b̄− δ −

1

Ṽ ∗
sp

. (17)

Then the three equations (15), (16), and (17) together determine the steady state for z,

n, and Ṽ .

4.1 The Empty Planet Steady State

We can now solve these three equations and characterize the steady state. The major

surprise that emerges is that when the equilibrium allocation features negative pop-

ulation growth in steady state, this Empty Planet steady state is also a solution to the

planner problem. Moreover, the planner problem can feature multiple steady states.

The intuition underlying this result is tied to a fundamental nonconvexity in the

math that we have highlighted since the beginning of the paper. In particular, steady
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Figure 2: Knowledge Growth and Population Growth in Steady State

0
0

Note: There is a fundamental “kink” in the technology for generating steady-state growth in the
model. If population growth is positive, then steady-state knowledge growth is proportional to n.
But if population growth is negative, then steady-state knowledge growth is zero. This kink — these
two regimes — gives rise to the possibility of multiple steady states.

state growth is

g∗y = σg∗A = σ

(

Nλ
t

Aβ
t

)∗

.

If population growth is positive, the constancy of the right-hand side of this equation

requires Nλ
t and Aβ

t to grow at the same rate, which requires the growth rate of At to

be proportional to the rate of population growth: g∗A = λn∗/β. If population growth is

negative, then yt and At are bounded, as we saw in Section 2 of the paper. Therefore,

steady state growth is given by

g∗y =







γn∗ if n∗
sp > 0

0 if n∗
sp ≤ 0

(18)

In this semi-endogenous growth setup, the long-run growth rate is the product of the

overall degree of increasing returns to scale, γ ≡ λσ/β, and the rate at which scale is

growing, n∗
sp. Alternatively, if the planner solution features zero or negative population

growth in the steady state, then g∗A = g∗y = 0; see Figure 2.
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These two growth regimes were the focus of the first half of the paper. If steady-state

population growth is positive, then steady-state knowledge growth is proportional to n.

But if population growth is negative, then steady-state knowledge growth is zero. This

kink — these two regimes — is ultimately responsible for one of the key results of the

paper, which we state now:

Result 4 (The Empty Planet Result as an Optimal Steady State): Consider the case

where b̄ − δ − ρ/ε < 0 — that is, the case where the equilibrium allocation features

negative population growth (the Empty Planet result). Then this Empty Planet steady

state is also a steady state of the optimal allocation problem.

The result is easy to see from equations (15) and (16). Guess that n∗ < 0 is a solution.

Then g∗A = 0. As we noted above, this means that z∗ = 0 as well: if no ideas are being

produced, the social value of the new idea flow is zero. But when z∗ = 0, Ṽ ∗
sp = Ṽ ∗

eq as can

be seen by comparing equations (16) and (10): when the idea value of people is zero,

both the planner and the households value people solely through the Barro-Becker

preference associated with ε. They therefore choose the same population growth rate,

verifying that the Empty Planet steady state is a solution to the optimal allocation.

4.2 Multiple Steady States

What we just showed is that if the equilibrium allocation has negative population growth

in the steady state, then this Empty Planet steady state is also a solution of the planner

problem. This is true despite the fact that in the equilibrium, there is a possibly sub-

stantial externality: individuals do not take into account that their fertility decisions

influence the overall production of ideas and therefore long-run growth. It is just that

this externality shrinks to zero when there is negative population growth because the

flow of new ideas vanishes relative to the stock; that is, z → 0.

We now show that, provided the idea externality (γ) is sufficiently large, an alterna-

tive steady state with positive population growth will also be a solution to the planner

problem. That is, the planner problem will involve multiple steady states. This turns

out to be easiest to see in the case in which θ = 1, the log case, though it holds more

generally as we show in the appendix. We begin by motivating the case of θ = 1 as one

of interest and then proceed with it.
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Motivating the Log Case (θ = 1). Our model so far has considered generalized Barro-

Becker preferences u(c,N) = (N εc)1−θ/(1 − θ) with θ > 0 and ε > 0. Barro and Becker

(1989) originally considered only the case of 0 < θ < 1. Jones and Schoonbroodt (2010)

extended the analysis to θ > 1. On the one hand, this is the case that economists typi-

cally focus on. However, θ > 1means that the cross-partial derivative ∂2u(c,N)/∂c∂N <

0. That is, the marginal utility of adding more people declines as consumption in-

creases when θ > 1. Instead, when θ < 1, this cross partial is positive: the value

of adding more people is higher whenever consumption per person is higher, which

seems like the “natural” case. This raises a quandary: on the one hand, we often like

θ ≥ 1 in thinking about intertemporal tradeoffs. On the other hand, we also like the

cross-partial to be positive, which requires θ < 1.

What all of this points out is that the θ = 1 case is intermediate and so in some

sense balances these tradeoffs. Moreover, in Section 5, we will see that the θ = 1 case is

tremendously helpful in simplifying the analysis of transition dynamics and gaining

intuition. For all these reasons we will now focus on this case. The case of θ = 1

corresponds to log preferences, so u(c,N) = ε logN + log c.6

Multiple Steady States in the Log Case. A useful property of the log case is that the

effects of the growth rate on the discount rate in computing present values drops out.

This is readily seen by rewriting (15) and (16) when θ = 1:

Ṽ ∗
sp =

ε+ λz∗

ρ
(19)

where

z∗ =
σg∗A

ρ+ βg∗A
. (20)

Combining these equations gives us one of the relationships between Ṽ and n in the

steady state. Dropping the asterisks:

Ṽsp(n) =







1
ρ

(

ε+ γ
1+ ρ

λn

)

if n > 0

ε
ρ if n ≤ 0

(21)

6As usual, seeing this limit involves specifying flow utility as (k1−θ − 1)/(1− θ) where k ≡ Nεc.
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where the presence of two distinct cases is precisely driven by the kink shown above in

Figure 2.

In contrast, the equilibrium value of Ṽ from equation (10) is very simple when θ = 1:

Ṽeq =
ε

ρ
. (22)

That is, Ṽeq is constant over time, even along the transition path. And of course for both

allocations, population growth satisfies a second relation

n(Ṽ ) = b̄− δ −
1

Ṽ
. (23)

These equations determine the steady states for the equilibrium and optimal allo-

cations in the case of θ = 1. They are characterized graphically in Figures 3 and 4.

A Conventional Case when n∗
eq > 0. Figure 3 considers the case in which equilibrium

fertility is positive. In this case, there is a unique solution to equations (21) and (23). The

optimal allocation features a unique steady state in which optimal population growth

exceeds the equilibrium rate, i.e. n∗
sp > n∗

eq. In some sense, this is exactly what one

would expect in a model like this. There is a positive externality in equilibrium in that

households when choosing their fertility ignore the effect of having more kids on the

production of future ideas. The planner takes this into account and chooses a higher

population growth rate and therefore a higher growth rate for the economy.

When the Equilibrium Features Negative Population Growth. The case of interest

in this paper, however, is when equilibrium population growth is negative; relative to

Figure 3, consider lowering the value of b̄ − δ, for example. This case gives rise to a

rich set of outcomes, as suggested by Figure 4. With n∗
eq < 0, the optimal allocation

then features three steady states. A high “Expanding Cosmos” steady state has positive

population growth. The low steady state has the same negative population growth

rate as the equilibrium allocation; this is the Empty Planet outcome. Finally, there is a

middle steady state in between. We will see shortly that this steady state is unstable and

would never be reached along the optimal path. Appendix A.5 solves analytically for the

multiple steady states and the conditions under which they occur, but the formulas are
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Figure 3: A Unique Steady State for the Optimal Allocation when n∗
eq > 0

Steady State

Equilibrium

Note: In the case of θ = 1, when b̄ − δ − ρ/ǫ > 0, equilibrium fertility is positive. There is then a
unique solution to equations (21) and (23). That is, the optimal allocation features a unique steady
state with n∗

sp > n∗

eq .
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Figure 4: Multiple Steady States in the Optimal Allocation when n∗
eq < 0

High Steady State

 (Expanding Cosmos)

Middle Steady State

Equilibrium = Low Steady State

 (Empty Planet)

Note: When equilibrium fertility is negative and there exists an “Expanding Cosmos” steady state
for the planner problem, there are three solutions to equations (21) and (23) that characterize the
steady state for γ sufficiently large. We will see later that the middle steady state is unstable and can
be ruled out.

not especially helpful.

Using the graph in Figure 4, however, some key comparative statics can be appreci-

ated. First, as we have just seen, changes in b̄− δ — the maximum possible fertility rate

if 100% of time was devoted to fertility — shift the blue n(Ṽ ) schedule up and down.

A higher b̄ − δ raises both the equilibrium and optimal fertility rates, and it is only for

b̄ − δ sufficiently small that the equilibrium fertility rate can be negative and therefore

the Empty Planet result emerges.

Second, a higher γ — that is, a larger degree of increasing returns associated with

ideas and therefore the larger the “idea value of people” — rotates the green Ṽ (n) sched-

ule down and to the right and therefore increases the population growth rate associated

with the Expanding Cosmos steady state. Intuitively, the size of the gap between the

Empty Planet and the Expanding Cosmos is pinned down by the importance of ideas

in the economy. As the important of ideas vanishes to zero, the green Ṽ (n) schedule
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rotates backwards and eventually the planner problem features a unique steady state

that is the same as the equilibrium.

As discussed in Appendix A.5, a similar graph characterizes the steady states when

θ 6= 1, but it is more complicated. When θ > 1, the Ṽ (n) schedule eventually “bends

backward” heading back to Ṽ = 0 as n goes to infinity. When instead θ < 1, the Ṽ (n)

schedule flattens out at a finite n as Ṽ goes to infinity. The three steady states exist for a

range of plausible parameter values. At some level, we know this is intuitively true. We

showed above in Result 4 that the Empty Planet steady state is a solution of the optimal

allocation for any θ. And by the “positive externality of people” argument, one would

expect a high steady state to exist as long as ideas are sufficiently important, i.e. for γ

sufficiently large.

At this point, a key question remains: what then determines which steady state is

reached? Would the optimal allocation ever involve going to the Empty Planet steady

state? To answer these questions, we turn to the transition dynamics of the model.

5. Stability and Transition Dynamics

Given the presence of three steady states in the optimal allocation, the transition dy-

namics are subtle. Moreover, because our model has two state variables, At and Nt, as

well as one control variables, ℓt, transition dynamics can be hard to visualize. However,

an advantage of the log case (θ = 1) is that a redefinition of the state variables simplifies

the dynamics.

In particular, redefine the state variables as pt ≡ logNt and xt ≡ Aβ
t /N

λ
t . We will

refer to xt as “knowledge per person,” which is a slight abuse of language in that it

ignores the exponents. The optimal allocation of labor can be expressed solely as a

function of xt, which means that population growth can as well. This allows us to

study the transition dynamics in a simple two-dimensional plane. It is also useful to

keep in mind that with this definition of the state, Ȧt/At = 1/xt. That is, the state-

like variable xt can also be interpreted as the inverse of the growth rate of knowledge.

Along any balanced growth path, xt will be constant. Finally, notice that a bigger x is

not necessarily better: it is the ratio of two state variables that are each good for welfare,

A and N . The results are summarized more precisely below (derived in Appendix A.6):
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Result 5 (Transition Dynamics for the Log Case): When θ = 1, we can define new state

variables xt ≡ Aβ
t /N

λ
t and pt ≡ logNt and then the following results emerge:

1. The value function H(xt, pt)/ρ can be expressed as W (xt)+νpt where ν ≡ (ε+γ)/ρ.

2. The policy function for optimal population growth depends only on xt and not on

pt.

3. The first order necessary conditions governing the optimal allocation can be ex-

pressed as two differential equations in xt and nt:

ẋt = β − λntxt (24)

ṅt = −(b̄− δ − nt)
2

[(

ρ+
β

xt

)(

ν −
1

b̄− δ − nt

)

− γ

]

(25)

These differential equations — together with an initial condition x0 and a transver-

sality condition — pin down the optimal path of population growth. Figure 5 shows

the phase diagram corresponding to the differential equations, with the green dashed

line showing the path for the optimal allocation. The high steady state is saddle-path

stable. The middle steady state is unstable. And the asymptotic Empty Planet steady

state is stable as well.

Rather than discuss these dynamics in detail now, it proves helpful to first calibrate

the parameters of the model and solve for the transition dynamics numerically. That

way we can discuss the transition dynamics in the context of somewhat realistic num-

bers.

5.1 Numerical Solution of the Transition Dynamics

Table 2 summarizes our parameter choices. Values are chosen to be realistic, but the

general results are robust to a range of alternative values.

Because we do not observe ideas directly, it is convenient to normalize σ = 1 so that

A has the units of total factor productivity. The extensive evidence on idea production

functions in Bloom, Jones, Van Reenen and Webb (2020) suggests that β > 0 so that

the exponential growth of ideas is getting harder to achieve. With some decreasing

returns to research at a point in time (λ = 0.75), their evidence is consistent with β = 2.
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Figure 5: The Phase Diagram for the Optimal Allocation

Note: This figure shows the phase diagram for the optimal allocation in (x, n) space based on
the differential equations in (24) and (25) when parameters are such that equilibrium population
growth is negative. Arrows indicate dynamics and there are two interior steady states where the
curves intersect. The dashed green line shows the path for the optimal allocation.
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Table 2: Parameter Values and Steady-State Results

Key Assumed Values as Inputs to Quantitative Analysis

Parameter/Moment Value Comment

θ 1 Dramatically simplifies analysis

σ 1 Normalization

λ 0.75 Duplication effects

β 2 Bloom, Jones, Van Reenen and Webb (2020)

δ 1/90 Death rate, life expectancy is 90 years

ρ δ All discounting is from mortality, ρ = δ = 1.11%

n∗
eq -0.5% Suggested by fertility rates in Europe, Japan, U.S.

ℓ∗eq 1/8 Time spent raising children

Implied Parameter Values and Steady-State Results

Result Value Comment

b̄ .049 n∗
eq = b̄ℓ∗eq − δ = −0.5%

ε .260 From equation (27) for ℓ∗eq

γ 0.375 Overall degree of IRS, γ ≡ λσ/β

High “Expanding Cosmos” SS

n∗
sp 1.16% From equations (28) and (29) for ℓ∗sp and n∗

sp

ℓ∗sp 0.46 From equations (28) and (29) for ℓ∗sp and n∗
sp

gspy 0.43% Equals γn∗
sp

Unstable Middle SS

n∗
sp 0.26% From equations (28) and (29) for ℓ∗sp and n∗

sp

ℓ∗sp 0.28 From equations (28) and (29) for ℓ∗sp and n∗
sp

gspy 0.10% Equals γn∗
sp

Note: The first panel in the table shows key assumptions that are an input into the numerical
examples. The second panel shows implied parameter values and steady-state results given these
assumptions.
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These choices imply that the overall implied degree of increasing returns to scale is

γ ≡ λσ/β = 0.375.

We assume a conventional death rate of δ = 1/90 ≈ 1.1%, corresponding to a life

expectancy of 90 years. We then set the overall rate of time preference as ρ = δ ≈ 1.1%

as well.

Motivated by the recent fertility experience in the OECD, Japan, and the United

States, we assume n∗
eq = −0.5%, so that in equilibrium, the population will decline

at half a percent per year. Finally, we assume that the typical person spends about 1/8

of his or her time endowment producing and raising children.7

Given these assumptions, the following four equations determine the values of b̄, ε,

n∗
sp, and ℓ∗sp:

n∗
eq = b̄ℓ∗eq − δ = −0.5% (26)

ℓ∗eq = 1−
ρ

b̄ε
= 1/8 (27)

n∗
sp = b̄ℓ∗sp − δ (28)

ℓ∗sp = 1−
ρ

b̄(ε+ λz∗)
(29)

where z∗ is given by (20).

Implied Parameter Values and Steady-State Results. The implied parameter values

and steady-state outcomes are shown in the bottom part of Table 2. For the high steady

state, the optimal population growth rate given these values is substantially higher than

the equilibrium rate: 1.16% versus -0.5%. Even with sharp dynamic diminishing returns

in the idea production function (β = 2), there is a large positive externality to offspring

in this calibration. The associated steady-state growth rate of income per person is

0.43%. This is lower than growth rates observed for the past century in the U.S. because

this model omits other — transitory — sources of growth such as rising educational

attainment and declining misallocation that have been important. See Jones (2022)

for a discussion and for broader evidence suggesting that this seemingly low long-run

7Taking a broad interpretation of time, i.e. including education, this value is reasonable. Smaller values
produce qualitatively similar results. However, for ℓeq ≤ 1/10, for example, the dynamics around the
middle steady state feature spirals and jumps; these are discussed in more detail in Jones (2020). Given
that this makes the discussion more complicated without adding much insight, we’ve chosen the slightly
higher value of 1/8.
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Figure 6: Transition Dynamics for the Equilibrium Allocation

25  100 400 1600 6400

-0.5%
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2.0% 

Equilibrium rate

Asymptotic Low SS

(Empty Planet)

KNOWLEDGE PER PERSON, x

POPULATION GROWTH, n(x)

Note: This figure shows the transition dynamics in the equilibrium allocation with θ = 1 and
negative population growth. The state variable on the horizontal axis is xt ≡ Aβt /N

λ
t , which we

somewhat loosely refer to as “knowledge per person.” The law of motion for xt is ẋt = β − λntxt.
Clearly, if nt is negative, then ẋ > 0. Arrows indicate these transition dynamics. The equilibrium
features a constant negative rate of population growth, which causes xt to increase over time.

growth rate, driven primarily by γ = 0.375, is a plausible calibration.

The last part of Table 2 shows the values associated with the unstable middle steady

state. We will discuss these values more shortly.

Stability and Dynamics. As a warm-up exercise, Figure 6 shows the transition dy-

namics for the equilibrium allocation. When θ = 1, the equilibrium actually features

a constant value of Ṽt = Ṽeq = ε
ρ . Because this social value of people is constant over

time, so is the population growth rate. In other words, the population growth rate is

always equal to -0.5% per year in this calibration. (Details are in Appendix A.3.)

With a constant negative population growth rate, xt ≡ Aβ
t /N

λ
t increases over time:

intuitively, At rises to an upper bound, while Nt is falling, which causes xt to increase.

The Empty Planet steady state occurs as xt goes to infinity, so that Ȧt/At = 1/xt falls to

zero. These dynamics are shown in Figure 6 and very simple, but this is a good way to
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Figure 7: Transition Dynamics for the Optimal Allocation
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Note: This figure shows the transition dynamics in the optimal allocation with θ = 1. The state
variable on the horizontal axis is x ≡ Aβ/Nλ, which we somewhat loosely refer to as “knowledge
per person.” Arrows indicate transition dynamics. If the economy begins with a stock of knowledge
per person that is not too high, it converges to the stable “high” steady state. Alternatively, if
knowledge per person is sufficiently high, the economy converges to the Empty Planet steady state
with negative population growth, which equals the equilibrium rate. The “middle steady state” is
unstable and divides the two regions.

introduce the figure and it complements the dynamics of the optimal allocation, which

we turn to now.

Figure 7 shows the more complicated dynamics of the optimal allocation; the nu-

merical solution method is discussed in Appendix B. The high Expanding Cosmos steady

state is saddle-path stable. There are a wide range of potential starting points for knowl-

edge per person, x, such that the optimal allocation ultimately converges to the high

steady state. This is what one would generally expect in a problem like this.

As suggested by the phase diagram back in Figure 5, the middle steady state is

unstable. For values of x just to the left of the middle steady state, the dynamics take

the economy to the high steady state. Alternatively, if x is just above the middle steady

state, the dynamics take the economy to the right, ultimately converging to the Empty
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Planet steady state.8

The intuition for the stability of the steady states is easiest to see if we begin at

the Empty Planet. Close to the Empty Planet steady state — i.e. for large xt — nt is

negative so that population is declining. Because xt ≡ Aβ
t /N

λ
t , xt will increase when Nt

is declining (because At is always increasing). This means that the Empty Planet steady

state is stable. Interestingly, x can also increase even when n is positive, provided n is

sufficiently small. Recall that its law of motion is ẋt = β−λntxt. Clearly if nt is negative,

then ẋ > 0, but this is sufficient rather than necessary: ẋt > 0 can occur with positive

population growth as long as nt is sufficiently small. This explains how the transition

dynamics feature rising xt to the right of the middle steady state.

Further intuition goes as follows. An increase in knowledge per person xt causes

optimal fertility to decline because the extra ideas produced by offspring have a di-

minishing marginal benefit; this explains the negative slope of n(x) in Figure 7. If

equilibrium fertility were positive, then optimal fertility would also remain positive

— the planner values people at least as much as the equilibrium. But if equilibrium

fertility is negative, then for xt high enough, optimal fertility becomes negative as well.

This is because as xt goes to infinity, the stock of knowledge divided by the number of

people is so high that the “knowledge value” of additional offspring falls to zero. But

once population growth is negative, xt increases over time rather than decreases since

the denominator of x ≡ Aβ/Nλ is falling. That causes xt to increase, reinforcing the

change. That is the intuition for the bifurcation in Figure 7 and the perhaps surprising

stability of the Empty Planet outcome.

What do the transition dynamics look like for alternative parameter values? The

intuition for the answer can be found by looking back at the n(Ṽ ) and Ṽ (n) figure that

characterized the multiple steady states several pages ago back in Figure 4. If we reduce

the importance of ideas in the economy — i.e. if we reduce γ, say by making ideas even

harder to find via a higher β — the V (n) curve rotates back to the left. This pushes down

the Expanding Cosmos steady state and raises the middle steady state. That is, the

two points get closer together. In Figure 7, this shrinks the range of x values for which

the transition dynamics lead xt to decline. If we continue to lower γ and reduce the

8For higher values of γ than we assume in our baseline, the unstable middle steady state can become
a spiral “Skiba point” instead of a source. The dynamics are slighly more complicated than here, but the
bottom line points are unchanged. See Jones (2020) for the analysis of this case.
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importance of ideas, eventually the n(Ṽ ) and Ṽ (n) curves are tangent — the “high” and

“middle” steady states become the same point. If we reduce the importance of ideas

even further, so that the n(Ṽ ) curve in Figure 4 lies entirely below the Ṽ (n) schedule, the

transition dynamics then always involve x increasing, and the only steady state is the

Empty Planet outcome. Intuitively, if ideas are not very important, both the equilibrium

and the optimal allocations will feature negative population growth.

5.2 The Economics of the Transition Dynamics

The transition dynamics lead to an important economic point, summarized in Figure 8.

Consider an economy that is governed by the equilibrium allocation. It features nega-

tive population growth at rate n∗
eq, and suppose the economy is initially endowed with a

certain population and stock of knowledge such that knowledge per person, x0, equals

50 (and therefore Ȧ0/A0 = 1/x0 = 2%). The social planner would like the economy

to have a much higher fertility rate and converge to the Expanding Cosmos steady

state with positive population growth and positive economic growth: both the number

of people and income per person would rise exponentially forever. In contrast, the

equilibrium allocation will simply move the economy steadily to the right, to higher

values of x, along the lower line: there will be a constant negative rate of population

growth, so knowledge per person, x, will rise as the number of people declines.

At any point in time, society may adopt better policies, such as a fertility subsidy,

that move the economy to the optimal allocation. If this occurs at x = 100 or x =

400, then the economy will eventually transition to the high steady state and exhibit

exponential growth forever. Notice that the TFP growth rate of the economy is just 1/xt,

so these values of x correspond to TFP growth rates of 1% or 0.25%, helping us to think

about mapping this diagram into our actual economy.

However — and this is the surprising point — if the economy delays adopting good

policies for too long, eventually knowledge per person x will rise above the value as-

sociated with the middle steady state. In our calibration, this occurs at x∗middle = 1020

and therefore when TFP growth is Ȧt/At = 1/x∗middle = 0.1%.9 Once this happens,

the optimal regime changes. Adopting good policies that deliver the optimal allocation

9In exploring different plausible parameter values in the calibration, TFP growth at the middle steady
state was typically very low. As discussed above, higher values of γ push population growth and TFP
growth at the middle steady state even lower.
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Figure 8: Transition Dynamics: Summary
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Note: The bottom line in the figure shows the transition dynamics for the equilibrium allocation while the
curved lines show the dynamics for the optimal allocation. An economy governed by the equilibrium
dynamics can get trapped in the Empty Planet outcome if it waits too long to switch to the optimal
allocation. In this calibration, that would occur if knowledge per person, x, rises above about 1020 or,
equivalently, when TFP growth slows to less than 0.1%.

now puts the economy along a path that takes it to the right. Knowledge per person

continues to grow and the economy will converge to the low steady state. Population

growth eventually turns permanently negative, the population declines, knowledge will

remain below an upper bound, and income per person will stagnate. This is the Empty

Planet outcome. The surprise is that if society waits too long to adopt good policies,

the optimal allocation switches from one of sustained exponential growth in popu-

lation, knowlege, and living standards to one of stagnation and an empty planet.

In our quantitative analysis, we can also compute how much growth remains once

the optimal population growth rate turns negative (at around x = 1600). From that

point forward, growth is already so low that income per person only increases by a

further 31% before stagnating at the Empty Planet steady state.

This discussion is summarized in our last main result:
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Result 6 (The Optimal Allocation with Endogenous Fertility): The allocation that max-

imizes the welfare of each generation converges to one of two steady states. If the econ-

omy adopts the optimal allocation while knowledge per person, x, is sufficiently low, it

leads to the Expanding Cosmos outcome of sustained exponential growth in population,

knowledge, and living standards. Alternatively, if the economy waits too long to switch

to the optimal path, it converges to the Empty Planet outcome: living standards stagnate

as the population gradually declines toward zero.

6. Conclusion

Historically, fertility rates in high-income countries have fallen from 5 children per

women to 4, 3, 2, and now even fewer. From a family’s standpoint, there is nothing

special about “above two” versus “below two” and the demographic transition may lead

families to settle on fewer than two children. The macroeconomics of the problem,

however, make this distinction one of critical importance: it is the difference between

an Expanding Cosmos of exponential growth in both population and living standards

and an Empty Planet, in which incomes stagnate and the population vanishes.

Endogenizing fertility leads to an additional subtlety. When the equilibrium fertility

rate is negative, the optimal allocation typically features two stable steady states. If the

economy adopts the optimal allocation soon enough, it converges to the Expanding

Cosmos. But if the economy waits too long to switch, even the optimal allocation can

be trapped by the Empty Planet outcome.

We’ve presented our results in the context of simple models that omit many other

considerations related to fertility, including the demographic transition, a quality-quantity

tradeoff, urbanization, and rising female labor force participation. This is not because

these other forces are unimportant but rather reflects an effort to highlight the key

mechanisms in the paper as cleanly as possible. The “idea value of people” is tied to

the flow of new ideas that are created at each point in time and is, at least partially, a

positive externality that would lead optimal population growth to exceed the equilib-

rium rate in many models. With negative population growth, however, the flow of new

ideas goes to zero. It is this force that allows the optimal allocation to be trapped in an

Empty Planet, and this mechanism would also be at work in richer models of fertility
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and growth. In that sense, we believe the key results in this paper would generalize to

richer setups.

One force we have abstracted from here is the possible depreciation of knowledge.

It is well-known by historians that fundamental ideas have been lost with the decline

of some civilizations. That may not be a problem here in that living standards continue

to increase in this model, so that our technologies for storing knowledge may remain

effective. However, if knowledge were to depreciate at a constant exogenous rate, it

is easy to show in the simple models at the start of this paper that this would lead to

declining living standards in the presence of negative population growth, an even more

dire outcome.

Of course, the results in this paper are not a forecast — the paper is designed to

suggest that a possibility we have until now not considered carefully deserves more

attention. There are ways in which this model could fail to predict the future even

though the forces it highlights are operative. Automation and artificial intelligence

could enhance our ability to produce ideas sufficiently that growth in living standards

continues even with a declining population, for example. Or new discoveries could

eventually reduce the mortality rate to zero, allowing the population to grow despite

low fertility. Or evolutionary forces could eventually favor groups with high fertility

rates (Galor and Moav, 2002). Nevertheless, the emergence of negative population

growth in many countries and the possible consequences for the future of economic

growth make this a topic worthy of further exploration.
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Appendix to “The End of Economic Growth?

Unintended Consequences of a Declining Population”

A. Derivation of Results

A.1 Derivation of Result 1. Romer/AH/GH with Negative Population

Growth

Integrate the differential equation:

∫
dAt

At
= αN0

∫

e−ηtdt

which gives

logAt = C0 −
αN0

η
e−ηt

Setting t = 0 to solve for the constant gives

C0 = logA0 +
αN0

η

Next, note that gA0 = αN0. Then the time path for the stock of ideas over time:

logAt = logA0 +
gA0

η

(
1− e−ηt

)

So that as t → ∞,

logAt → logA∗ ≡ logA0 +
gA0

η

In other words, an exponentially declining growth rate leads to a steady state level of

technology and income per person.

yt → y∗ ≡
(

A0e
gA0/η

)σ

Finally, converting fully into output terms using gy = σgA:

y∗

y0
= e gy0/η = exp

(
gy0
η

)

.

40
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The time it takes At to reach (A∗ +A0)/2 is then

t1/2 = −
1

η
log

(

1−
η

gA0
log

(
1

2

A0 +A∗

A0

))

.

A.2 Derivation of Result 2. Semi-Endogenous Growth with Negative

Population Growth

Integrate the differential equation:

∫

Aβ−1
t dAt = αNλ

0

∫

e−ληtdt

which gives
1

β
Aβ

t = C0 −
αNλ

0

λη
e−ληt

Setting t = 0 to solve for the constant gives

C0 =
1

β
Aβ

0 +
αNλ

0

λη

Then the time path for the stock of ideas over time:

Aβ
t = Aβ

0 +
βαNλ

0

λη

(

1− e−ληt
)

Dividing by Aβ
0 and noting that gA0 = αNλ

0 A
−β
0 gives

At

A0
=

(

1 +
βgA0

λη

(

1− e−ληt
))1/β

Converting to output using y = Aσ and defining γ ≡ λσ/β to measure the overall

degree of increasing returns to scale:

yt
y0

=

(

1 +
gy0
γη

(

1− e−ληt
))γ/λ

(30)

Taking the limit as t → ∞,

y∗

y0
=

(

1 +
gy0
γη

)γ/λ
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Taking logs and derivatives of equation (30) gives the growth rate over time:

ẏt
yt

= gy0 ·

(
yt
y0

)−λ
γ

e−ληt =
gy0e

−ληt

1 +
gy0
γη (1− e−ληt)

The time it takes At to reach (A∗ +A0)/2 is then

t1/2 = −
1

λη
log

[

1 +
λη

βgA0

(

1−

[
1

2

A0 +A∗

A0

]β
)]

.

A.3 Derivation of Result 3. The Equilibrium with Endogenous Fertility

The Hamiltonian for this problem is

H = u(ct, Nt) + vt[b(ℓt)− δ]Nt

where vt is the shadow price (in utils) of another person.

The first-order condition for this problem with respect to ℓt is

uc(ct, Nt)wt
︸ ︷︷ ︸

MU of time in making goods

= vtNtb
′(ℓt)

︸ ︷︷ ︸

MU of time in fertility

(31)

On the right side, spending a little more time on fertility leads each of Nt people to have

b′(ℓt) additional offspring, valued at shadow price vt. Alternatively, the time could be

spent working to earn the wagewt, which is converted to utility units using the marginal

utility of consumption. At the maximum, individuals are indifferent between these two

options.

Using our function form assumptions with some algebra, this condition can be

rewritten as

ℓt = 1−
1

b̄Ṽt

, where Ṽt ≡
vtNt

uctct
. (32)

The variable Ṽt is important and has the following economic interpretation: it is the

shadow value of the entire population vtNt, converted into output units by dividing

by the marginal utility of consumption uct ≡ ∂u(ct, Nt)/∂ct, as a ratio to consumption

per person. In other words, it is the social value of the population measured in years
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of per capita consumption. Time spent having kids, ℓt, and therefore overall fertility

nt = b̄ℓt − δ, depends on this key variable:

nt = b̄− δ −
1

Ṽt

(33)

The first-order condition for Nt gives an arbitrage-like equation for the shadow

price of people:

ρ =
v̇t
vt

+
1

vt
(uNt + vtnt) (34)

where uNt ≡ ∂u(ct, Nt)/∂Nt is the marginal utility of having another person in the

dynasty. Rearranging to solve for vt gives

vt =
uNt

ρ− gvt − nt.

Along a BGP, gvt and nt are constant, so the growth rate of vt is given by the growth

rate of uNt. To see its value, notice that the Cobb-Douglas structure gives uNtNt = ε(1−

θ)u(ct, Nt) and uctct = (1−θ)u(ct, Nt). Therefore gv = gu−n and gu = ε(1−θ)n+(1−θ)gc.

Substituting these equations into the equation for vt along the BGP gives

Ṽ ∗ =
ε

ρ− ε(1− θ)n∗ − (1− θ)g∗c
(35)

Fertility along the BGP is then

n∗ = b̄− δ −
1

Ṽ ∗
. (36)

The equilibrium allocation in steady state is given by the solution of these two equa-

tions in n∗ and Ṽ ∗.

If n∗ < 0, then g∗c = 0. Combining these two equations to solve for n∗
eq then leads to

n∗
eq =

1

θ

(

b̄− δ −
ρ

ε

)

(37)

which is negative if b̄− δ − ρ/ε < 0.

Alternatively, if b̄ − δ − ρ/ε > 0, then n∗ > 0 and g∗c = γn∗. In this case, solving the
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two equations in two unknowns gives10

n∗
eq =

b̄− δ − ρ/ε

1− (1− θ)
( ε+γ

ε

) . (38)

The Special Case of θ = 1. In the special case of θ = 1, it is obvious from (35) that

Ṽ ∗
eq = ε

ρ . But in fact, it turns out that Ṽt = Ṽ ∗
eq at all points in time. This can be seen by

noting that the utility function when θ = 1 is u(c,N) = log c + ε logN (see Section 4.2)

so that uN = ε/N . The law of motion for vt in equation (34) can then be written as

˙̃Vt = ρṼt − ε.

This differential equation has a rest point at Ṽ ∗
eq which is unstable. Any solution other

than ˙̃Vt = 0 for all t turns out to violate the transversality condition or a resource

constraint.

The constancy of Ṽt when θ = 1 means that equilibrium population growth is also

constant over time:

nt = b̄− δ −
ρ

ε
for all t. (39)

A.4 Derivation of Result 4. The Empty Planet Result as an Optimal Steady

State

These results are derived in the main text.

A.5 Multiple Steady States with Barro-Becker Preferences

The three equations (15), (16), and (17) together determine the steady state for z, n,

and Ṽ . Result 4 already showed that there can exist an Empty Planet steady state that

involves negative population growth. We show in this section the conditions under

which the Expanding Cosmos steady state and a middle unstable steady state can exist.

In particular, our focus is on the case shown in Figure 4 when the two interior steady

states involve positive population growth. Relative to that figure, though, we do this

for the generalized Barro-Becker preferences that permit θ 6= 1. We see below that two

10This case requires further conditions on parameters. For example, n∗

eq < ρ

(1−θ)(ε+γ)
to keep the

denominator in (35) positive.
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conditions that support the presence of multiple steady states are (i) n∗
eq < 0 and (ii) γ

sufficiently large.

For steady states that feature positive population growth, g∗A = λn∗/β and g∗c = γn∗.

Making these substitutions, equations (15), (16), and (17) can be written as

z∗ =
σγn∗

ρ+ λn∗ − (1− θ)(ε+ γ)n∗
(40)

Ṽ ∗ =
ε+ λz∗

ρ− (1− θ)(ε+ γ)n∗
(41)

n∗ = b̄− δ −
1

Ṽ ∗
. (42)

Defining φ ≡ (1− θ)(ε+ γ) to simplify the notation, these equations can be written

as a quadratic equation in n∗:

[λ(ε+ γ)− (ε+ λ)φ+ φ2]
︸ ︷︷ ︸

≡ a

(n∗)2−

[

(ε+ γ)(b̄− δ)−
εφ

λ
nlog
eq − ρ

(

1 +
ε− φ

λ

)]

︸ ︷︷ ︸

≡ b

n∗−ρεnlog
eq

︸ ︷︷ ︸

≡ c

= 0

(43)

where nlog
eq ≡ b̄ − δ − ρ/ε denotes the equilibrium population growth rate in the log

preference case θ = 1.

There exist parameter values such that this quadratic equation has two positive

real roots. To see this, notice that examples would feature a > 0, b > 0, and c > 0.

This last piece, c > 0, is true when the equilibrium population growth rate is negative,

illustrating the important role played here by a negative equilibrium population growth

rate. Next, notice that θ = 1 implies φ = 0. So a > 0 is guaranteed when θ = 1 and in

fact is true for any θ > 1 and more generally as long as θ is not too small.

Third, we need b > 0. To see that this can occur notice that when θ = 1 so that φ = 0,

we have

b > 0 ⇐⇒ b̄− δ −
ρ

λ

ε+ λ

ε+ γ
> 0

Clearly this condition will hold for γ sufficiently large.

Figure 9 shows examples with multiple steady states for different values of θ starting

from the baseline parameters we use in the main paper given in Table 2. Panel (a) shows

that our baseline parameter values deliver multiple steady states when θ = 0.7. When

θ = 1.5 in panel (b), there is a unique steady state at the Empty Planet for our baseline
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Figure 9: Multiple Steady States with Barro-Becker Preferences
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(a) θ = 0.7
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(b) θ = 1.5

Note: The graphs show the possibility of multiple steady states for the generalized Barro-Becker prefer-
ences when θ 6= 1. Steady states occur where the n(Ṽ ) and the Ṽ (n) schedules intersect. These graphs
are based on our baseline parameters given in Table 2. When θ = 1.5 in panel (b), there is a unique steady
state with negative population growth (the Empty Planet) for our baseline value of γ = 0.375; the idea
value of people is too small to create the high steady state in this case. But for γ = 1, the multiple steady
states reappear.

value of γ = 0.375; the idea value of people is too small to create the high steady state

in this case. But when ideas are more important — say for γ = 1 — the multiple steady

states reappear. This illustrates the basic message that when equilibrium population

growth is negative and when ideas are sufficiently important (i.e. when γ is sufficiently

high), the optimal allocation features multiple steady states.

A.6 Derivation of Result 5. Transition Dynamics for the Log Case (θ = 1)

Define new state variables xt ≡ Aβ
t /N

λ
t and pt ≡ logNt. Using the laws of motion for At

and Nt, these state variables evolve according to

ẋt = β − λntxt

ṗt = nt = b̄ℓt − δ

Consumption per person is ct = x
γ/λ
t Nγ

t (1− ℓt). Taking logs, flow utility when θ = 1
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is

u(ct, Nt) = log ct + ε logNt

=
γ

λ
log xt + (ε+ γ)pt + log(1− ℓt)

and therefore the Hamiltonian for the optimal allocation is linear in pt:

H =
γ

λ
log xt + (ε+ γ)pt + log(1− ℓt) + µt(β − λn(ℓt)xt) + νtn(ℓt)

The first-order condition with respect to ℓt, Hℓ = 0, can be written as

ℓt = 1−
1

b̄(νt − λµtxt)

which then implies

nt = b̄− δ −
1

(νt − λµtxt)
. (44)

The first-order condition with respect to xt is

µ̇t

µt
= ρ+ λnt −

γ

λ
·

1

µtxt
. (45)

The first-order condition with respect to pt is

ν̇t
νt

= ρ−
1

νt
(ε+ γ).

This can be rewritten as

ν̇t = ρνt − (ε+ γ).

This differential equation has a rest point which is unstable. Any solution other than

ν̇ = 0 for all t turns out to violate the transversality condition or a resource constraint.

Therefore we have

νt = ν ≡
ε+ γ

ρ
. (46)

This means the Hamiltonian can be written as

H =
γ

λ
log xt + log(1− ℓt) + µt(β − λn(ℓt)xt) + νn(ℓt) + (ε+ γ)pt (47)
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Moreover, the first-order conditions above in (44) and (45) are independent of p given

the constant ν. Since the value function isH/ρ, it can therefore be written asW (xt)+νpt

once we recognize that n is some function of xt only.

The remaining piece of the result is to derive the law of motion for nt in terms of nt

and xt only. To do this, it useful to define an intermediate variable mt ≡ λµtxt. Note

that

ṁt

mt
=

µ̇t

µt
+

ẋt
xt

=

(

ρ+ λnt −
γ

mt

)

+

(
β

xt
− λnt

)

= ρ+
β

xt
−

γ

mt

so that

ṁt =

(

ρ+
β

xt

)

mt − γ

Next, from (44), we have

nt = b̄− δ −
1

(ν −mt)
. (48)

Taking time derivatives:

ṅt = −(ν −mt)
−2ṁt

= −(b̄− δ − nt)
2ṁt

= −(b̄− δ − nt)
2

[(

ρ+
β

xt

)

mt − γ

]

Finally, we can replace mt in this equation by rewriting (48) as

mt = ν −
1

b̄− δ − nt
.

A.7 Derivation of Result 6. The Optimal Allocation with Endogenous

Fertility

These results are derived in the main text and in Appendix B on transition dynamics.
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B. Solving Numerically for Transition Dynamics

The key differential equations characterizing the optimal allocation were given in Re-

sult 5 in equations (24) and (25):

ẋt = β − λntxt (49)

ṅt = −(b̄− δ − nt)
2

[(

ρ+
β

xt

)(

ν −
1

b̄− δ − nt

)

− γ

]

(50)

The steady state of this system is

x∗ =
β

λn∗

n∗ =
1

2
b̃±

√

1

4
b̃2 +

εnlog
eq

λν

where

b̃ ≡ b̄− δ −
ε+ λ

λν
> 0

and

nlog
eq ≡ b̄− δ −

ρ

ε
.

The numerical solution of the transition dynamics for the optimal allocation proceeds

in two steps, first listed here and then described in more detail below:

1. We linearize the transition dynamics associated with these two differential equa-

tions to see that the high steady state is stable while the middle steady state is

unstable.

2. We solve the original nonlinear system of differential equations in (xt, nt) numer-

ically using a “reverse shooting” approach together with a starting guess close to

the steady state from the linearized system; see the Matlab program OptimalDynamics.m.
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B.1 Linearizing around the Interior Steady States

Linearizing this differential system around the steady state gives

ẋt = −λn∗(xt − x∗)− λx∗(nt − n∗)

ṅt = β

(
b̄− δ − n∗

x∗

)2(

ν −
1

b̄− δ − n∗

)

(xt − x∗)

+
[
2(b̄− δ − n∗)(ε+ λνn∗)− ρ− λn∗

]
(nt − n∗)

Expressing the linearized system in matrix form with X ≡ [x n]′ allows us to write it

as Ẋt = B(Xt − X∗) where B is the matrix of coefficients, which in turn depends on

various steady-state values.

We can now evaluate this linearized system around the steady states using the pa-

rameter values in Table 2. First, consider the “high” steady state. The matrix Bhigh has

one negative eigenvalue and one positive eigenvalues, both real, indicating a saddle-

path stable steady state. In contrast, the “middle” steady state is unstable: both its

eigenvalues are positive and real. These results are computed in the Matlab program

OptimalDynamics.m.

This general characterization is broadly robust to the parameter values and shows

our first point: the high steady state is stable, while the middle steady state is an unsta-

ble source.

B.2 Numerical Transition Dynamics using the Original Hamiltonian

We solve the full nonlinear system numerically using a “reverse shooting” approach.

To begin, we start from the high steady state, move a tiny amount away according to

the negative eigenvalue and corresponding eigenvector of the linearized system, and

solve the full nonlinear dynamics backwards to characterize the optimal path. In one

direction, this takes us “up and to the left” in Figure 7 while in the other it takes us

toward the middle steady state. Finally, to get the dynamics between the middle steady

state and the Empty Planet steady state, we begin with x0 = 26, 000 (corresponding to

an initial growth rate of 1/26, 000 ≈ 0%) and ℓ0 = ℓeq, i.e. close to the “low” steady state.

We then solve backwards so this takes us along the optimal path back to the unstable

middle steady state.


